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ABSTRACT 

Suggested in this paper is a test for lack of 
fit and its implications for model change appli- 
cable to the general regression analysis model, 
especially when used to handle analysis of vari- 
ance with qualitative independent variables. 
Draper and Smith (1967) have developed a procedure 
to test for lack of fit of the general regression 
analysis model in the case where the data includes 
repeat measurements of Y at the given X values. 
However, when the independent variable(s), X, is 

qualitative, as is more usually the case in mul- 
tiple regression -ANOVA ( MR/AV), Draper's estimate 
of "pure error" will be exactly that value given 
as the residual mean square estimate. Thus, any 
possibility for such a test of lack of fit, i.e., 
for finding "pure error" to be less than the re- 
sidual mean square, will be obviated in this 
MR/AV case. alternative is to obtain repeated 
treatment levels from which an estimate of pure 
error can be obtained. Use of this suggested al- 
ternative pure error term in a test for lack of 
fit is used as an initial indicator as to whether 
attempts should be made to (a) find dependent 
variable transformations and (b) try various pos- 
sible independent variable product -variables. 

FITTING THE REGRESSION ANALYSIS MODEL 
IN EXPERIMENTATION 

INTRODUCTION 

The following is not intended as an exhaus- 
tive presentation of the use of the regression 
analysis model vis -a -vis experimental design data. 
In part, it is a review of the major aspects of 
this subject; however, the emphasis is on testing 
the adequacy of a specific model against real 
data. It is with respect to this latter point 
that we have ventured beyond what is already avail- 
able in the literature on this subject. The first 
section will examine the data coding techniques to 
be used in applying the regression model to experi- 
mental design data; the special concern here (as 
throughout this paper) is for the case of contin- 
uous dependent variables and categorical indepen- 
dent variables. Section II considers methods to 
be used in testing for lack of fit of a specific 
model to a given set of observations. Finally, 
the focus of Section III centers on the large 
spectrum of alternative regression models avail- 
able for application in data analysis. 

SECTION I 

ONE- DIMENSIONAL ANOVA 

If we are to use multiple regression analysis 
to do analysis of variance, the ANOVA data must be 
recoded prior to applying the multiple regression 

model (MR /AV). Thus, in this section we will con- 
sider the problem of recoding with regard to sim- 
ple ANOVA, factorial designs with equal cell 
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sizes, and factorial designs with unequal cell 

sizes. 
First the case of simple ANOVA. The most di- 

rect approach to recoding in MR/AV is referred to 
as dummy coding, and has as its objective a vector 

representation of each data observation such that 

observations in different cells are distinctly 

represented in terms of a binary system of l's and 

0's (Kerlinger and Pedhazur, 1973). Recall that 

the general linear regression model 

Y= BOZO +ß1Z1+ . . . +ßnZn +e 

where Zi = f(xl,x2,...,xm); Z0 1 

can also be expressed in the form 

(1) 

Y = My + ß1(Z1 + . . . + ßn(Zn 
Z 
) + e (2) 

where 
- . . . - = 

which, when compared with the analysis of variance 
model 

Y= +ai+ . . . +6. +e 

reveals the equality (Hays, 1973) 

(3) 

ß1(Z1 Z) (4) 

However, in the present case of categorical inde- 

pendent variables where the variables are being 

recoded each level of each factor -variable is rep- 
resented in the model. Consider a factor -variable 
with three levels, then observations at the first 
level are represented as the row vector 

[1 1 0] 

while observations at the second and third levels 

would have vector representations of 
[1 1] and 
[1 0 0] respectively. The 

first column is a unit vector; the second column 

has a "1" if an observation is a member of the 

first level and a "O" otherwise; the third column 

has a "1" where the observation belongs to the 

second level and a "O" otherwise. In contrast, the 

third level is indicated by the fact that its mem- 

bers belong to neither level one nor two, i.e., 
zeros in both columns two and three. Therefore, 

if we have three observations at each of the three 

levels, the result of recoding would be the follow- 
ing matrix: 

X0 X1 X2 

1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 0 

1 0 

1 

Thus the number of predictor variables "increases" 
by one (and alas the number of Df decreases!); and 
the general linear regression model is 

Y = + 
1Z1 

+ ß2Z2 + e (1) 



even though we are still concerned with only one 
factor with three levels. Computation of the 
square of the multiple correlation coefficient 
leads to an F test as follows: 

F - R2 /P 

(1- R2) /n -P -1 

where P = number of predictors; 
n = number of observations. 

The obtained F value with its respective number of 
degrees of freedom has the same level of probabil- 
ity as that which we could have computed using the 
typical ANOVA F -test 

Bet . 
F - 

MSWith. 
In place of recoding through the use of dummy 

coding, we can use either "effect coding" or "or- 
thogonal coding." Besides doing the same thing as 
the first technique, these latter two recoding 
techniques provide a convenient approach to the 
multiple comparison of means. Effect coding dif- 
fers from dummy coding in that it uses " -l's" in- 

stead of "0's" to represent that group which was 
identified by the fact of non -membership in any 
other group. Thus, rather than just l's and 0's, 
the coding entails l's, O's and -l's. Using this 

coding approach post hoc multiple comparisons of 
means can be carried out by what in effect is a 
statistical test of the significance of the dif- 
ference between any two or more relevant regres- 
sion coefficient estimates, In terms of effect 
coding, the above matrix would take the form 

X0 X1 X2 

1 1 0 

1 1 

1 1 

1 1 

1 1 

1 0 1 

1 -1 -1 

1 -1 1 

1 -1 -1 

In contrast, orthogonal coding leads to the oppor- 
tunity to perform planned orthogonal comparisons 
among group means. To do this the column vectors 
must consist of terms such that each vector is 
orthogonal to all other vectors, with the exception 
of the initial unit vector which is omitted in many 
computer routines. Each column vector in turn ex- 
presses a separate orthogonal contrast. Again we 
can construct the matrix based on the above hypo- 
thetical ANOVA problem using orthogonal coding thus: 

X0 X1 X2 

1 

1 1 h 
1 1 h 
1 -1 h 
1 -1 h 
1 -1 h 
1 -1 

1 -1 

1 -1 

Column two gives a contrast between the means for 
group one and group two, while column three com- 
pares the average of group one and two with group 
three -- orthogonal to the first comparison. A test 
of significance applied to a particular regression 
weight (ß) indicates whether the comparison speci- 
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fied by the corresponding column vector is signifi- 

cant or not, i.e., if is significantly different 

from zero, the comparison of column vector X1 is 

also significant with respect to the difference be- 

tween group one and group two means. 

Factorial Design: 

For the case of multiple independent variables, 

each expressed in terms of the categorical level of 

measurement, the coding systems dealt with above can 

be shown to have direct applicability through gener- 

alizations of the principles used in the simple ANOVA 

situation. Suppose our analysis is of a 2 x 3 fac- 

torial design with two observations per cell. The 

resulting orthogonally coded matrix would take the 

form 

(X0) (X1) (X2) (X3) (X12) (X13) 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 -1 1 -1 1 

1 1 -1 1 -1 1 

1 1 -1 1 -1 1 

1 -1 -1 1 1 -1 

1 -1 -1 1 1 -1 

1 -1 -1 1 1 -1 

1 -1 0 -2 0 2 

1 -1 0 -2 0 2 

1 -1 0 -2 0 2 

1 -1 0 -2 0 2 

1 -1 0 -2 0 2 

1 -1 0 -2 0 2 

The X0 column vector is again a vector of l's and 

refers simply to the overall mean level of our re- 

gression model. Vector X1 refers to factor A of 

two levels and uses a 1 to indicate membership in 

the first level and -1 for membership in the second 

level, contrasting these two levels. Columns X2 

and X3 of course refer to independent variable B 

which has three levels. Thus X2 provides a compari- 

son between levels one and two of variable B; 

whereas, levels one and two are compared with level 

three in column X3. Finally, X12 and X13 account 
for the possible interaction between the two inde- 

pendent variables for any given dependent variable. 

These last to vector are formed by simply taking 

the cross -products of the relevant main effects 

column, e.g., X12 consist of cross -products between 

the elements of vectors X1 and X2. The several F- 

ratios for main and interaction effects can be com= 

puted through the computation of R2 values based on 

subsets of the orthogonal column vectors. For ex- 

ample, if vectors X12 and X13 are separately ana- 

lyzed we get a R2 value indicating the amount of 

variance accounted for by the interaction of the 

two (or more!) factors. 
An added complication enters the picture if the 

cell sizes contain unequal numbers of observations. 
This stems from the fact that the main and interac- 

tion effects are no longer orthogonal to each other; 

and therefore, different results can be obtained 

depending on the order in which the total variance 

is partitioned into the variance of the separate 

components (Overall and Klett, 1973). Briefly, 

these are the three possible partitions. Simply 

consider the problem of calculating the variance 



due to the main effect of variable A in the hypo- 
thetical 2 x 3 factorial design mentioned above. 
a) R2 can be computed for the column vector(s) 
of main effect A, and the variance thus accounted 
for can be determined by the product 
Total Variance RX {Variance due to main effect Al 

1 

b) If R2 for main effect B is subtracted from R2 
for both main effects A and B, then the variance 
accounted for by main effect A is given by the 
product 
Total Variance '[R 

2 

x ,x -Rx , xi 
2 3 2 

x3 

{Variance due to main effect A} 
c) Yet a third approach might entail taking the 
difference between R2 computed for effects A, B 

and interaction and R2 computed for effects B and 
interaction; in this instance, the variance due to 

main effect A would be given by the product 
Total Variance v[R2 

xl'x2'x3'x12'x13 Rx2'x3'x12'x13] 
{Variance due to main effect Al 

In each of these three efforts to accounting for 
the variance due to main effect A different ans- 
wers are obtainable given the situation of unequal 
cell sizes. It is the second strategy, (b), that 
corresponds to the ANOVA technique as used in ex- 
perimentation (see Overall and Klett, 1972). 

Aside: Wolf and Cartwright have recently 
(1974) proposed a quite different approach to this 
problem of coding in MR/AV. Their approach re- 
quires that an experimenter solve for the coded 
matrix (x) using the matrix solution to the normal 
equations b = (x'x)-1)0y. Of course y is the Nxl 
vector of dependent variable observations. The 
Jxl (where J = the number of comparisons) b vector 
is obtained by the matrix formula b = c(V'V)-1V'y 
where V is an NxK (K the number of categories) 
matrix of dummy coded l's and 0's, indicating mem- 
bership (1) and non -membership (0) in the several 
categories; and C is a JxK matrix of weights for 
the comparison of category means. An example of 
C provided by Wolf and Cartwright is 

1 -1 0 0 
C = -4 -4 1 

-4 -4 
which applies in one -dimensional ANOVA when the 
cell sizes are equal. Thus computing the vector b 
allows for the generation of a coded matrix (x) to 
be used in the multiple regression analysis of 
ANOVA (by solving for x in b = (x'x) x'y)). The 
end product is a coded matrix which in appearance 
is considerably different from the matrices obtain- 
able using either of the three coding techniques 
that we have considered up to this point. Like- 
wise, Wolf and Cartwright state that the computed 
b, error and F values all differ from those gotten 
using a coding system consisting of l's, 0's and 
-l's However, they do reveal that the inferences 
made using these two differing approaches do not, 
themselves, differ. The statistical conclusions 
remained the same. 

SECTION II 

TESTING FOR LACK OF FIT 

If we make the very important shift in refer- 
ence away from simply testing the relationship be- 
tween the independent and dependent variables vis- 

a -vis a specific test statistic to testing the 
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adequacy of the test statistic model with respect 
to the data at hand, we will at least become aware 
of the presen -e of diverse models; and at most we 
will find independent /dependent variable relation- 
ships which would have otherwise been overlooked 
given the limitations of any one specific model. 
This point is singularly fundamental throughout 
this and the next section: whenever we test for a 
relationship within a set of observations, we do 
so in the context of a very specific model imposed 
on the data; and thus, must consider the possibil- 
ity that an alternative model might prove more re- 
vealing (without simply capitalizing on chance 
characteristics of the data). 

Draper and Smith (1966) published a technique 
to test for the lack of fit of a regression model. 
The key component is the computation of a "pure 
error mean squares" term (Si) used to evaluate a 
lack of fit mean squares term (MSL). To compute 
this pure error value the data must contain repeat 
observations on the dependent variable (Y) at sev- 
eral levels of the independent variable (X). Thus, 

pure error refers to the variability of Y within 
levels of X: 

k n; 

Pure Error (SS) (Y.. - ÿ) 
e 

j 
=1 i =1 

Lack of Fit (SSL) Residual (SS) - 

This test for lack of fit follows the F distribu- 
tion with 

F 

SSL /DfL 
S2 Lack of Fit (MS) 

SSe /Dfe Pure Error (MS 

e 

A significantly large F value indicates that 
the residual error term consists of more than sim- 
ple error variability, i.e., the model being con- 
sidered fails to account for some non -error variance. 

Other questions might be raised at this point; 
however, the crucial one here is: What happens if 
the independent variables (X) are categorical rather 
than continuous? After all, this is more typically 
the case in social science data analysis using ANOVA. 
If we attempt to apply the above technique to MR /AV 
given categorical independent variables, the find- 
ing is that this approach invariably gives us a 
value for exactly the same as the residual MS 
value. And thus we have no basis for ever finding 
a model inadequate. It is for this case that we 
would like to suggest an alternative approach. 

Perhaps the pure error term (Si) should be 
computed by splitting the data in half for each 
level of theindependent variable, computing a mean 
for each half cell of data and looking at the varia- 
bility of half cell means within the several inde- 
pendent variable levels. 

n. 
Pure Error (SS)' {Z -ÿi)2 2 } 
where is half cell mean; 

is a mean for the entire cell. 
This presumably would be comparable to a treatment 
(SS) value under the condition of no systematic re- 
lationships in a set of data. Thus, the F distribu- 
tion would take the form 

Pure Error) (MS)' n2 (Y-Y)2 /Dfe 

F Residual (MS)' Residual (SS)' /Dfres 

and a significantly small F value would indicate 
that the residual term is inflated for the given 



regression model. Of course this requires reason- 
ably large sample sizes. 

SECTION III 

ALTERNATIVE REGRESSION ANALYSIS MODELS 

A test for lack of fit is here intended to 
imply both an entire system of candidate models 
and a willingness to explore the possible useful- 
ness of any one of these models. Again the con- 
text to be assumed is that of continuous dependent 
variables and categorical independent variables. 
Two major types of alternative models are to be 

dealt with. The maneuver distinguishing the first 
type will be the gamut of variable transformations 
which may be applied to the dependent variable, 
whereas the strategy of the second class of alter- 
native models revolves around the generation of 
"new" independent variables through taking the 
cross -products of the original independent varia- 
bles producing what will be called "interaction 
variables." Of course there exists no compelling 
reason why both of the above manipulations cannot 
be applied simultaneously. 

There is quite a good deal of literature de- 
voted to the subject of data variable transforma- 
tions (Bartlett, 1947; Box, 1962; Tukey, 1957). 
One rationale for data transformations is that the 

transformations make for a more precise analysis by 
bringing real data into greater conformity with the 
assumptions of the analysis, e.g., homogeneity of 
variance, normality, additivity, etc. However, 
clear and convincing indicators as to where, for 
example, a square root or a reciprocal, a log or an 
arcsin transformation might most profitably be ap- 

plied does not seem evident from the literature. 
The user must resort largely to trial and error, 
and testing for lack of fit. Some general guide- 
lines have been put forward (Myers, 1972). Given 
a situation where the variance is proportional to 
the means (i.e., a2 = K) the square root func- 
tion should be tried to achieve variance constancy. 
Application of a log function to observed data 
might be attempted in the case where the standard 
deviation is directly proportional to the mean 
(i.e., (a /u)2 K) and the distribution is consid- 
erably skewed. Use of the arcsin function has re- 
sulted in reports of success in the case where the 
data observations are proportions (or percentages) 
with a2 = 

General Regression Model 

Y +ß1Z1+ . . . +e= 

n 
= +e 
i =0 

where Zi = f(X1,X1, . . 

Regression Model with Dependent 
Variable Transformation 

ZnY e 

i=0 

(1) 

(5) 
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This should be enough to make it clear that the 
possibilities with respect to use of dependent 
variable transofrmations are virtually limitless. 

Compared to data transformations on contin- 
uous variables, there appears to be little published 
material concerned with the generation of new inde- 
pendent variables from a set of data where the in- 
dependent variables are measured at the categorical 
level (Cohen, 1968). In general, this second group 
of alternative models can be characterized by the 
fact that they are the result of forming new inde- 
pendent variables by taking the cross -products of 
the basid set of independent variables in some 
cases referred to as moderate variables. Thus, 

for example, 

General Regression Model Y = + e (1) 

where Zi = f(X0'X1' 
. . m) and X0 through X make up the original data base. 

Typically we woulid simply have the equality Zi =Xi; 
however, in the case of cross -products we might 
have 

Interaction (Variable) 
Z Between and X. 

= Xi X 6 

Given as few as, say, three original data variables 
there are, as can be quite easily shown, several 

interaction variables which can be computed (which 
is not to say that they should be!). Whether these 
interaction variables account for any variance of 
consequence can be tested by the usual multiple R2 
ratio following the F distribution: 

(R2.12 - 
R )/ 

1)f 
F - 

y.12 
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